Online collision prediction among 2D polygonal and articulated obstacles

نویسندگان

  • Yanyan Lu
  • Zhonghua Xi
  • Jyh-Ming Lien
چکیده

Collision prediction is a fundamental operation for planning motion in dynamic environment. Existing methods usually exploit complex behavior models or use dynamic constraints in collision prediction. However, these methods all assume simple geometry, such as disc, which significantly limit their applicability. This paper proposes a new approach that advances collision prediction beyond disc robots and handles arbitrary polygons and articulated objects. Our new tool predicts collision by assuming that obstacles are adversarial. Comparing to an online motion planner that replans periodically at fixed time interval and planner that approximates obstacle with discs, our experimental results provide strong evidences that the new method significantly reduces the number of replans while maintaining higher success rate of finding a valid path. Our geometric-based collision prediction method provides a tool to handle highly complex shapes and provides a complimentary approach to those methods that consider behavior and dynamic constraints of objects with simple shapes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collision Prediction Among Rigid and Articulated Obstacles with Unknown Motion

Collision prediction is a fundamental operation for planning motion in dynamic environment. Existing methods usually exploit complex behavior models or use dynamic constraints in collision prediction. However, these methods all assume simple geometry, such as disc, which significantly limit their applicability. This paper proposes a new approach that advances collision prediction beyond disc ro...

متن کامل

A Recursive Algorithm of Obstacles Clustering for Reducing Complexity of Collision Detection in 2D Environment

In applications of industrial robots, the robot manipulator must traverse a pre-specified Cartesian curve (path) with its hand tip while links of the robot safely move among obstacles. In order to reduce the costs of collision detection, the number of collision checks can be reduced by enclosing a few obstacles (a cluster) with a larger (artificial) bounding volume, e.g. by their convex hull, w...

متن کامل

Collision Prediction: Conservative Advancement among Obstacles with Unknown Motion∗

Collision detection is a fundamental geometric tool for samplingbased motion planners. On the contrary, collision prediction for the scenarios that obstacle’s motion is unknown is still in its infancy. This paper proposes a new approach to predict collision by assuming that obstacles are adversarial. Our new tool advances collision prediction beyond the translational and disc robots; arbitrary ...

متن کامل

Time-optimal task scheduling for articulated manipulators in environments cluttered with obstacles

This paper proposes a new approach for solving a generalization of the task scheduling problem for articulated robots (either redundant or non-redundant), where the robot’s 2D environment is cluttered with obstacles of arbitrary size, shape and location, while a set of task-points are located in the robot’s free-space. The objective is to determine the optimum collision-free robot’s tip tour th...

متن کامل

Conservative Collision Prediction Among Polygons with Unknown Motion

Collision detection is a fundamental geometric tool for sampling-based motion planners. On the contrary, collision prediction for the scenarios that obstacle’s motion is unknown is still in its infancy. This paper proposes a new approach to predict collision by assuming that obstacles are adversarial. Our new tool advances collision prediction beyond the translational and disc robots; arbitrary...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Robotics Res.

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2016